Air-Conditioners
OUTDOOR UNIT

PUHZ-8,10WYB

For use with R410A

INSTALLATION MANUAL
For safe and correct use, please read this installation manual thoroughly before installing the air-conditioner unit.
Fig. 6.1.1

- M10 anchor bolt procured at the site.
- Corner is not seated.

Fig. 7.2.1

<table>
<thead>
<tr>
<th>Outdoor</th>
<th>Liquid pipe</th>
<th>Gas pipe</th>
</tr>
</thead>
<tbody>
<tr>
<td>8HP</td>
<td>ø9.52</td>
<td>ø19.09</td>
</tr>
<tr>
<td>10HP</td>
<td>ø12.7</td>
<td>ø22.2</td>
</tr>
</tbody>
</table>

* ø12.7 for over 90m
8.2

(Fig. 8.2.1)

(Fig. 8.2.2)

(Fig. 8.2.3)

8.3

(Fig. 8.3.1)

(Fig. 8.3.2)

(Fig. 8.3.3)

In case of the cylinder having no syphon pipe.

8.3

(Fig. 8.3.1)

(Fig. 8.3.2)

(Fig. 8.3.3)

In case of the cylinder having no syphon pipe.
8.4

[Fig. 8.4.1]

- Steel wire
- Piping
- Asphaltic oily mastic or asphalt
- Heat insulation material A
- Outer covering B

[Fig. 8.4.2]

- Liquid pipe
- Gas pipe
- Electric wire
- Finishing tape

[Fig. 8.4.3]

[Fig. 8.4.4]

- Inner wall (concealed)
- Outer wall
- Outer wall (exposed)
- Floor (waterproofing)
- Roof pipe shaft
- Penetrating portion on fire limit and boundary wall

9.2

[Fig. 9.2.1]

- Power source
- Transmission line
- Earth screw

9.3

[Fig. 9.3.1]

[Fig. 9.3.2]

9.4

[Fig. 9.4.1]

- Switch (breakers for wiring and current leakage)
- Breakers for current leakage
- Outdoor unit
- Indoor unit

- 3N-380~415V
- L1, L2, L3, N, PE
Contents

1. Safety precautions

1.1. Before installation and electric work

Symbols used in the illustrations

- Indicates an action that must be avoided.
- Indicates that important instructions must be followed.
- Indicates a part which must be grounded.
- Beware of electric shock. (This symbol is displayed on the main unit label.)

1.2. Precautions for devices that use R410A refrigerant

Caution:
- Do not use existing refrigerant piping.
 - The old refrigerant and refrigerant oil in the existing piping contains a large amount of chlorine which may cause the reactor of the new unit to deteriorate.
 - R410A is a high-pressure refrigerant and can cause the existing piping to burst.
- Use refrigerant piping made of phosphorus deoxidized copper and copper alloy seamless pipes and tubes. In addition, be sure that the inner and outer surfaces of the pipes are clean and free of hazardous sulphur, oxides, dust/dirt, scratching particles, oils, moisture, or any other contaminant.
- Contaminants on the inside of the refrigerant piping may cause the refrigerant residual oil to deteriorate.
- Store the piping to be used during installation indoors and keep both ends of the piping sealed until just before brazing. (Store elbows and other joints in a plastic bag.)
 - If dust, dirt, or water enters the refrigerant cycle, deterioration of the oil and compressor trouble may result.
 - Use ester oil, ether oil or alkylbenzene (small amount) as the refrigerant oil to coat flares and flange connections.
 - The refrigerant oil will degrade if it is mixed with a large amount of mineral oil.
 - Use liquid refrigerant to fill the system.
 - If gas refrigerant is used to seal the system, the composition of the refrigerant in the cylinder will change and performance may drop.
 - Do not use a refrigerant other than R410A.
 - If another refrigerant (R22, etc.) is mixed with R410A, the chlorine in the refrigerant may cause the refrigerant oil to deteriorate.
 - Use a vacuum pump with a reverse flow check valve.
 - The vacuum pump oil may flow back into the refrigerant cycle and cause the refrigerant oil to deteriorate.
 - Do not use the following tools that are used with conventional refrigerants.
 (Gauge manifold, charge hose, gas leak detector, reverse flow check valve, refrigerant charge base, refrigerant recovery equipment)
 - If the conventional refrigerant and refrigerant oil are mixed in the R410A, the refrigerant may deteriorate.
 - If water is mixed in the R410A, the refrigerant oil may deteriorate.
 - Since R410A does not contain any chlorine, gas leak detectors for conventional refrigerants will not react to it.
 - Do not use a charging cylinder.
 - Using a charging cylinder may cause the refrigerant to deteriorate.
3. Confirmation of parts attached

<table>
<thead>
<tr>
<th>Model</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

1.3. Before installation

Caution:
- Do not install the unit where combustible gas may leak.
- If the gas leaks and accumulates around the unit, an explosion may result.
- Do not use the air conditioner where food, pets, plants, precision instruments, or artwork are kept.
- The quality of the food, etc. may deteriorate.
- Do not use the air conditioner in special environments.
- Oil, steam, sulfuric smoke, etc. can significantly reduce the performance of the air conditioner or damage its parts.
- When installing the unit in a hospital, communication station, or similar place, provide sufficient protection against noise.
- Inverter equipment, private power generator, high-frequency medical equipment, or radio communication equipment may cause the air conditioner to operate erroneously, or fail to operate. On the other hand, the air conditioner may affect such equipment by creating noise that disturbs medical treatment or image broadcasting.

Do not install the unit on a structure that may cause leakage.
- When the room humidity exceeds 80 % or when the drain pipe is clogged, condensation may drip from the indoor unit. Perform collective drainage work together with the outdoor unit, as required.

1.4. Before installation - electrical work

Caution:
- Ground the unit.
 - Do not connect the ground wire to gas or water pipes, lightning rods, or telephone ground lines. Improper grounding may result in electric shock.
- The reverse phase of L lines (L1, L2, L3) can be detected (Error cord: 4103), but the reverse phase of L lines and N line cannot be detected.
- Some electric parts may be damaged when power is supplied during miss wiring.
- Install the power cable so that tension is not applied to the cable.
 - Tension may cause the cable to break and generate heat and cause a fire.
- Install a leak circuit breaker, as required.
 - If a leak circuit breaker is not installed, electric shock may result.
- Use power line cables of sufficient current carrying capacity and rating.
 - Cables that are too small may leak, generate heat, and cause a fire.
- Use only a circuit breaker and fuse of the specified capacity.
 - A fuse or circuit breaker of a larger capacity, a steel or copper wire may result in a general unit failure or fire.
- Do not wash the air conditioner units.
 - Washing them may cause an electric shock.
- Be careful that the installation base is not damaged by long use.
 - If the damage is left uncorrected, the unit may fall and cause personal injury or property damage.

2. About the product

- This unit uses R410A-type refrigerant
- Piping for systems using R410A may be different from that for systems using conventional refrigerant because the design pressure in systems using R410A is higher. Refer to Data Book for more information.
- Some of the tools and equipment used for installation with systems that use other types of refrigerant cannot be used with the systems using R410A. Refer to Data Book for more information.
- Do not use the existing piping, as it contains chlorine, which is found in conventional refrigerating machine oil and refrigerant. This chlorine will deteriorate the refrigerant machine oil in the new equipment. The existing piping must not be used as the design pressure in systems using R410A is higher than that in the systems using other types of refrigerant and the existing pipes may burst.

3. Confirmation of parts attached

- Install the drain piping according to this Installation Manual to ensure proper drainage. Wrap thermal insulation around the pipes to prevent condensation.
- Improper drain piping may cause water leakage causing damage to furniture and other possessions.
- Be very careful about transporting the product.
 - One person should not carry the product as it weighs more than 20 kg.
 - Some products use PP bands for packaging. Do not use any PP bands as a means of transportation. It is dangerous.
 - Do not touch the heat exchanger fins. Doing so may cut your fingers.
 - When transporting the outdoor unit, support it at the specified positions on the unit base. Also support the outdoor unit at four points so that it cannot slip sideways.
- Safety dispose of the packing materials.
 - Packing materials, such as nails and other metal or wooden parts, may cause stabs or other injuries.
 - Tear apart and throw away plastic packaging bags so that children will not play with them. If children play with a plastic bag which was not torn apart, they face the risk of suffocation.

1.5. Before starting the test run

Caution:
- Turn on the power at least 12 hours before starting operation.
 - Starting operation immediately after turning on the main power switch can result in irreversible damage to internal parts. Keep the power switch turned on during the operational season.
- Do not touch the switches with wet fingers.
- Touching a switch with wet fingers can cause electric shock.
- Do not touch the refrigerant pipes during and immediately after operation.
 - During and immediately after operation, the refrigerant pipes may be hot or cold, depending on the condition of the refrigerant flowing through the refrigerant piping, compressor, and other refrigerant cycle parts. Your hands may suffer burns or frostbite if you touch the refrigerant pipes.
- Do not operate the air conditioner with the panels and guards removed.
 - Rotating, hot, or high-voltage parts can cause injuries.
- Do not turn off the power immediately after stopping operation.
 - Always wait at least five minutes before turning off the power. Otherwise, water leakage and trouble may occur.
- Do not touch the surface of the compressor during servicing.
 - If unit is connected to the supply and not running, crank case heater at compressor base is operating.

Conduit mounting plate (ø53)
- 2 pcs.

Connecting pipe (Flare)
- 8 pcs.

Conduit mounting plate (ø46)
- 1 pc.

Conduit mounting plate (ø33)
- 1 pc.

Conduit mounting plate (ø27)
- 1 pc.

Tapping screw M4
- 2 pcs.

Connecting pipe (Flare)
- 1 pc.

Connecting pipe (Flange)
- 1 pc.

Packing (inside ø2, outside ø38)
- 1 pc.
4. Space required around unit

[Fig. 4.0.1] (P.2)

[A]: Top view [B]: Side view
[C]: When there is little space up to an obstruction
[D]: Front
[E]: No restrictions on wall height (left and right)
[F]: Air outlet guide (Procured at the site)

(1) Basic space required
(2) When there is an obstruction above the unit
(3) When inlet air enters from right and left sides of unit
- Wall heights “H” of the front and the back sides shall be within total height of unit.
- When wall height “H” exceeds total height of unit, add “h” dimension to L1 and L2 of the Fig. 5.0.1.

“h” = wall height “H” – total height of unit
(4) When unit is surrounded by walls

Note:
- Wall heights “H” of the front and the back sides shall be lower than either the front or the back panel.

5. Lifting method

[Fig. 5.0.1] (P.2)

Caution:
Be very careful to carry product.
- Do not have only one person to carry product if it weighs more than 20 kg.
- PP bands are used to pack some products. Do not use them as a mean for transportation because they are dangerous.
- Do not touch heat exchanger fins with your bare hands. Otherwise you may cut your hands.
- Tear plastic packaging bag and scrap it so that children cannot play with it. Otherwise plastic packaging bag may suffocate children to death.
- When carrying outdoor unit, be sure to support it at four points. Carrying with 3-point support may make outdoor unit unstable, resulting in it falling.

6. Installation of unit

6.1. Installation

[Fig. 6.1.1] (P.3)

- M10 anchor bolt procured at the site.
- Corner is not seated.

- Fix unit tightly with bolts so that unit will not fall down due to earthquake or gust of wind.
- Use concrete or angle bracket for foundation of unit.
- Vibration may be transmitted to the installation section and noise and vibration may be generated from the floor and walls, depending on the installation conditions. Therefore, provide ample vibrationproofing (cushion pads, cushion frame, etc.).
- Be sure that the corners are firmly seated. If the corners are not firmly seated, the installation feet may be bent.

Warning:
- Be sure to install unit in a place strong enough to withstand its weight. Any lack of strength may cause unit to fall down, resulting in a personal injury.

7. Refrigerant piping installation

Connecting the piping is a terminal-branch type in which refrigerant piping from the outdoor unit is branched at the terminal and connected to each of the indoor units.

The method of pipe connection is as follows: flare connection for the indoor units, gas pipes for outdoor units, flare connection for 8WYB and brazed connection for 10WYB; liquid pipes, flare connection. Note that the branched sections are brazed.

Warning:
Always use extreme care to prevent the refrigerant gas from leaking while using fire or flame. If the refrigerant gas comes in to contact with a flame from any source, such as a gas stove, it breaks down and generates a poisonous gas which can cause gas poisoning. Never weld in an unventilated room. Always conduct an inspection for gas leakage after installation of the refrigerant piping has been completed.

7.1. Caution
This unit uses refrigerant R410A. Follow the local regulations on materials and pipe thickness when selecting pipes.

1. Use the following materials for refrigeration piping.
 - Material: Use refrigerant piping made of phosphorus deoxidized copper.
 - In addition, be sure that the inner and outer surfaces of the pipes are clean and free of hazardous sulphur, oxides, dust/dirt, shaving particles, oils, moisture, or any other contaminant.

2. Commercially available piping often contains dust and other materials. Always blow it clean with a dry inert gas.

3. Use care to prevent dust, water or other contaminants from entering the piping during installation.

4. Reduce the number of bending portions as much as possible, and make bending radius as big as possible.
8. Additional refrigerant charge

At the time of shipping, the outdoor unit is charged with the refrigerant. As this charge does not include the amount needed for extended piping, additional charging for each refrigerant line will be required on site. In order that future servicing may be properly provided, always keep a record of the size and length of each refrigerant line and the amount of additional charge by writing it in the space provided on the outdoor unit.

8.1. Calculation of additional refrigerant charge

- Calculate the amount of additional charge based on the length of the piping extension and the size of the refrigerant line.
- Use the table below as a guide to calculating the amount of additional charging and charge the system accordingly.
- If the calculation results in a fraction of less than 0.1 kg, round up to the next 0.1 kg. For example, if the result of the calculation was 11.38 kg, round the result up to 11.4 kg.

8.2. Precautions concerning piping connection and valve operation

- Conduct piping connection and valve operation accurately.
- The gas side connecting pipe is assembled before shipment.
- For brazing to the connecting pipe with flange, remove the connecting pipe with flange from the ball valve, and braze it outside of the unit.
- During the time when removing the connecting pipe with flange, remove the seal attached on the rear side of this sheet and paste it onto the flange surface of the ball valve to prevent the entry of dust into the valve.
- The refrigerant circuit is closed with a round, close-packed packing upon shipment to prevent gas leak between flanges. As no operation can be done under this state, be sure to replace the packing with the hollow packing attached at the piping connection.
- At the mounting of the hollow packing, wipe off dust attached on the flange sheet surface and the packing. Coat refrigerating machine oil (Ester oil, ether oil or alkylbenzene [small amount]) onto both surfaces of the packing.

Caution:

- Use a vacuum pump with a reverse flow check valve.
- If the vacuum pump does not have a reverse flow check valve, the vacuum pump oil may flow back into the refrigerant cycle and cause deterioration of the refrigerant oil and other troubles.
- Do not use the tools shown below used with conventional refrigerant.
 (Gauge manifold, charge hose, gas leak detector, check valve, refrigerant charge base, vacuum gauge, refrigerant recovery equipment)

- Mixing of conventional refrigerant and refrigerant oil may cause the refrigerating agent to deteriorate.
- Mixing of water will cause the refrigerating oil to deteriorate.
- R410A refrigerant does not contain any chlorine. Therefore, gas leak detectors for conventional refrigerants will not react to it.
- Manage the tools more carefully than normal.
- If dust, dirt, or water gets in the refrigerant cycle, the refrigerating oil will deteriorate.
- Never use existing refrigerant piping.
- The large amount of chlorine in conventional refrigerant and refrigerant oil in the existing piping will cause the new refrigerant to deteriorate.
- Store the piping to be used during installation indoors and keep both ends of the piping sealed until just before brazing.
- If dust, dirt, or water gets into the refrigerant cycle, the oil will deteriorate and the compressor may fail.
- Do not use a charging cylinder.
- Using a charging cylinder may cause the refrigerant to deteriorate.
- Do not use special detergents for washing piping.

7.2. Refrigerant piping system

Connection Example

Fig. 7.2.1 (P.3)
- Outdoor unit
- First branch
 * ø12.7 for over 90 m

Fig. 8.2.1 (P.4)
- Close-packed packing
- Hollow packing

- After evacuation and refrigerant charge, ensure that the handle is fully open. If operating with the valve closed, abnormal pressure will be imparted to the high- or low-pressure side of the refrigerant circuit, giving damage to the compressor, four-way valve, etc.
- Determine the amount of additional refrigerant charge by using the formula, and charge refrigerant additionally through the service port after completing piping connection work.
- After completing work, tighten the service port and cap securely not to generate gas leak.
- Flare machining dimension for systems using R410A is larger than that for systems using other types of refrigerant in order to increase the air tightness.
- Refer to the table below for flare machining dimensions, and follow the regulations set forth by the local authorities. Seal off the opening of the pipe with a closure material (not supplied) to keep small animals from entering the pipe if that is a concern.

**	outer diameter	size in inches	dimension A	R410A
ø25.35 & 1" & 25.1 |
ø29.52 & 3/8" & 13.2 |
ø31.7 & 1/2" & 18.6 |
ø36.0 & 5/8" & 19.7 |
ø41.05 & 3/4" & 24.0 |

**	outer diameter	size in inches	dimension B	R410A
ø25.35 & 1/4" & 27.0 |
ø29.52 & 3/8" & 22.0 |
ø36.0 & 1/2" & 28.0 |
ø41.05 & 3/4" & 36.0 |

Fig. 8.2.2 (P.4)
- A [Ball valve [gage side/flanged type]]
- B [Ball valve [liquid side]]
- This figure shows the valve in the fully open state
Evacuation

Due to the use of other refrigerant such as R22 or R407C, which contains chlorines, it deteriorates the refrigerating machine oil or cause the compressor to malfunction.

Evacuate with the ball valve of the outdoor unit closed and evacuate both the connection piping and the indoor unit from the service port provided on the ball valve of the outdoor unit using a vacuum pump. (Always evacuate from the service port of both liquid pipe and gas pipe.) After the vacuum reaches 650 Pa (abs), continue evacuation for at least one hour or more.

* Never perform air purging using refrigerant.
• Use a manifold, charging hose, and other parts for the refrigerant indicated on the unit.
• Use a graviometer. (One that can measure down to 0.1 kg.)
• Use a vacuum pump with a reverse flow check valve.

(Recommended vacuum gauge: Rovanair 14830A Thermistor Vacuum Gauge)

Also use a vacuum gauge that reaches 65 Pa [abs] or below after operating for five minutes.

Refrigerant Charging

Since the refrigerant used with the unit is nonazeotropic, it must be charged in the liquid state. Consequently, when charging the unit with refrigerant from a cylinder, if the cylinder does not have a syphon pipe, charge the liquid refrigerant by turning the cylinder upside-down as shown in Fig. 8.3.3. If the cylinder has a syphon pipe like that shown in the picture on the right, the liquid refrigerant can be charged with the cylinder standing upright. Therefore, give careful attention to the cylinder specifications. If the unit should be charged with gas refrigerant, replace all the refrigerant with new refrigerant. Do not use the refrigerant remaining in the cylinder.

[Fig. 8.3.3] (P.4)

Refrigerant Charging

Since the refrigerant used with the unit is nonazeotropic, it must be charged in the liquid state. Consequently, when charging the unit with refrigerant from a cylinder, if the cylinder does not have a syphon pipe, charge the liquid refrigerant by turning the cylinder upside-down as shown in Fig. 8.3.3. If the cylinder has a syphon pipe like that shown in the picture on the right, the liquid refrigerant can be charged with the cylinder standing upright. Therefore, give careful attention to the cylinder specifications. If the unit should be charged with gas refrigerant, replace all the refrigerant with new refrigerant. Do not use the refrigerant remaining in the cylinder.

[Fig. 8.3.3] (P.4)

4. Thermal insulation of refrigerant piping

Be sure to give insulation work to refrigerant piping by covering liquid pipe and gas pipe separately with enough thickness heat-resistant polyethylene, so that no gap is observed in the joint between indoor unit and insulating material, and insulating materials themselves. When insulation work is insufficient, there is a possibility of condensation drip, etc. Pay special attention to insulation work to ceiling plenum.

[Fig. 8.4.1] (P.5)

9. Wiring

9.1. Caution

① Follow ordinance of your governmental organization for technical standard related to electrical equipment, wiring regulations and guidance of each electric power company.
② Wiring for control (hereinafter referred to as transmission line) shall be (5 cm or more) apart from power source wiring so that it is not influenced by electric noise from power source wiring. (Do not insert transmission line and power source wire in the same conduit.)
③ Be sure to provide designated grounding work to outdoor unit.
④ Give some allowance to wiring for electrical part box of indoor and outdoor units, because the box is sometimes removed at the time of service work.
⑤ Never connect the main power source to terminal block of transmission line. If connected, electrical parts will be burnt out.
⑥ Use 2-core shield cable for transmission line. If transmission lines of different systems are wired with the same multiplex cable, the resultant poor transmitting and receiving will cause erroneous operations.
⑦ Only the transmission line specified should be connected to the terminal block for outdoor unit transmission.
(Transmission line to be connected with indoor unit: Terminal block TB3 for transmission line. Other: Terminal block TB7 for centralized control)
Emotionless connection does not allow the system to operate.
⑧ In the case of connecting with an upper class controller or to conduct group operation in different refrigerant systems, the control line for transmission is required between the outdoor units. Connect this control line between the terminal blocks for centralized control.
(2-wire line with no polarity)
When conducting group operation in different refrigerant systems without connecting to the upper class controller, replace the insertion of the short circuit connector from CN41 of one outdoor unit to CN40.
⑨ Group is set by operating the remote controller.

9.2. Control box and connecting position of wiring

1. Connect the indoor unit transmission line to transmission terminal block (TB3), or connect the wiring between outdoor units or the wiring with the central control system to the central control terminal block (TB7).
When using shielded wiring, connect shield ground of the indoor unit transmission line to the earth screw (E) and connect shield ground of the line between outdoor units and the central control system transmission line to the shield (S) terminal of the central control terminal block (TB7) shield (S) terminal. In addition, in the case of outdoor units whose power supply connector CN41 has been replaced by CN40, the shield terminal (S) of terminal block (TB7) of the central control system should also be connected to the earth screw (E).
Fix the wiring securely in place with the cable strap at the bottom of the terminal block so that the external force if not applied to the terminal block. External force applied to the terminal block may damage the block and short-circuit, ground fault, or fire may result.

[Fig. 9.1.1] (P.5)

<table>
<thead>
<tr>
<th>Pipe size</th>
<th>ø25.4 to ø31.75 mm</th>
<th>ø28.68 to ø36.1 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td>10 mm min.</td>
<td>15 mm min.</td>
</tr>
<tr>
<td>Temperature Resistance</td>
<td>100°C</td>
<td>60°C</td>
</tr>
</tbody>
</table>

Note:
• When using polyethylene cover as covering material, asphalt roofing shall not be required.
• No heat insulation must be provided for electric wires.

Penetrations

When filling a gap with mortar, cover the penetration part with steel plate so that the insulation material will not be caved in. For this part, use combustible materials for both insulation and covering. (Vinyling covering should not be used.)
• Insulation materials for the pipes to be added on site must meet the following specifications:

When filling a gap with mortar, cover the penetration part with steel plate so that the insulation material will not be caved in. For this part, use combustible materials for both insulation and covering. (Vinyling covering should not be used.)
• Insulation materials for the pipes to be added on site must meet the following specifications:

When filling a gap with mortar, cover the penetration part with steel plate so that the insulation material will not be caved in. For this part, use combustible materials for both insulation and covering. (Vinyling covering should not be used.)
• Insulation materials for the pipes to be added on site must meet the following specifications:
9.3. Wiring transmission cables

- Types of control cables

1. Wiring transmission cables
 - Types of transmission cables: Shielding wire CVVS or CPEVS
 - Cable diameter: More than 1.25 mm²
 - Maximum wiring length: Within 200 m
 - Maximum length of transmission lines for centralized control and indoor/outdoor transmission lines (Max. length via indoor units): 500 m MAX
 - The maximum length of the wiring between power supply unit for transmission lines (on the transmission lines for centralized control) and each outdoor unit and system controller is 200 m.

2. Remote control cables
 - MA Remote Controller

<table>
<thead>
<tr>
<th>Kind of remote control cable</th>
<th>Sheathed 2-core cable (unsheathed) CVV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable diameter</td>
<td>0.3 to 1.25 mm² (0.75 to 1.25 mm²)*</td>
</tr>
<tr>
<td>Remarks</td>
<td>Within 200 m</td>
</tr>
</tbody>
</table>

- Connected with simple remote controller.

9.4. Wiring of main power supply and equipment capacity

Schematic Drawing of Wiring (Example)

- Switch (Breakers for wiring and current leakage)
- Breakers for current leakage
- Outdoor unit E
- Indoor unit

<table>
<thead>
<tr>
<th>Thickness of wire for main power supply, On/Off capacities and system impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum wire thickness (mm²)</td>
</tr>
<tr>
<td>Outdoor unit</td>
</tr>
<tr>
<td>10HP</td>
</tr>
</tbody>
</table>

1. Use a separate power supply for the outdoor unit and indoor unit.
2. Bear in mind ambient conditions (ambient temperature, direct sunlight, rain water, etc.) when proceeding with the wiring and connections.
3. The wire size is the minimum value for metal conduit wiring. The power cord size should be 1 rank thicker consideration of voltage drops.
4. Make sure the power-supply voltage does not drop more than 10%.
5. Specific wiring requirements should adhere to the wiring regulations of the region.
6. Power supply cords of parts of appliances for outdoor use shall not be lighter than polychloroprene sheathed flexible cord (design 245 IEC57). For example, use wiring such as YZW.
7. A switch with at least 3 mm contact separation in each pole shall be provided by the Air conditioner installation.

Warning:
- Be sure to use specified wires to connect so that no external force is imparted to terminal connections. If connections are not fixed firmly, it may cause heating or fire.
- Be sure to use the appropriate type of overcurrent protection switch. Note that generated overcurrent may include some amount of direct current.

Caution:
- Some installation site may require attachment of an earth leakage breaker. If no earth leakage breaker is installed, it may cause an electric shock.
- Do not use anything other than breaker and fuse with correct capacity. Using fuse and wire or copper wire with too large capacity may cause a malfunction of unit or fire.

Note:
- This device is intended for the connection to a power supply system with a maximum permissible system impedance shown in the above table at the interface point (power service box) of the user’s supply.
- The user has to ensure that this device is connected only to a power supply system which fulfills the requirement above.
- If necessary, the user can ask the public power supply company for the system impedance at the interface point.
10. Test run

10.1. The following phenomena do not represent trouble (emergency)

<table>
<thead>
<tr>
<th>Phenomenon</th>
<th>Display of remote controller</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor unit does not perform cooling (heating) operation.</td>
<td>"Cooling (heating)" flashes</td>
<td>When another indoor unit is performing the heating (cooling) operation, the cooling (heating) operation is not performed.</td>
</tr>
<tr>
<td>Fan setting changes during heating.</td>
<td>Normal display</td>
<td>Ultra low speed operation is commenced at thermostat OFF. Light air automatically changes to set value by time or piping temperature at thermostat ON.</td>
</tr>
<tr>
<td>Fan stops during heating operation.</td>
<td>Defrost display</td>
<td>The fan is to stop during defrosting.</td>
</tr>
<tr>
<td>Fan does not stop when operation has been stopped.</td>
<td>No lighting</td>
<td>Ultra low-speed operation for 5 minutes after SW ON or until piping temperature becomes 35°C, low-speed operation for 2 minutes thereafter, and then set notch is commenced. (Hot adjust control)</td>
</tr>
<tr>
<td>No setting of fan while start SW has been turned on.</td>
<td>Heat ready</td>
<td>When the outdoor unit is being cooled and the refrigerant is resting, warming up operation is performed for at least 30 minutes to warm the compressor (only #200). During this time, only the fan operates.</td>
</tr>
<tr>
<td>Outdoor unit does not operate by turning switch on.</td>
<td>Normal display</td>
<td>System is being driven.</td>
</tr>
<tr>
<td>Indoor unit remote controller shows "HO" indicator for about five minutes when turning ON universal power supply.</td>
<td>"HO" flashes</td>
<td>Operate remote controller again after "HO" disappear.</td>
</tr>
<tr>
<td>Drain pump does not stop when unit has been stopped.</td>
<td>Light out</td>
<td>After a stop of cooling operation, unit continues to operate drain pump for three minutes and then stops it.</td>
</tr>
<tr>
<td>Drain pump continues to operate when unit has been stopped.</td>
<td></td>
<td>Unit continues to operate drain pump if drainage is generated, even during a stop.</td>
</tr>
</tbody>
</table>

11. Information on rating plate

<table>
<thead>
<tr>
<th>Model</th>
<th>BHP</th>
<th>DPMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA</td>
<td>9.5</td>
<td>9.5</td>
</tr>
<tr>
<td>Allowable pressure (PSI)</td>
<td>HP: 4.15 MPa, LP: 2.21 MPa</td>
<td></td>
</tr>
<tr>
<td>Net weight (kg)</td>
<td>233</td>
<td></td>
</tr>
</tbody>
</table>

MANUFACTURER: MITSUBISHI ELECTRIC CORPORATION
AIR CONDITIONING & REFRIGERATION SYSTEMS
WORKS 5-66, TEBIRA, 6-CHOME, WAKAYAMA CITY, JAPAN

12. Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>PUHZ-8WYB</th>
<th>PUHZ-10WYB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise level (50 Hz)</td>
<td>57 dB[A]<</td>
<td>57 dB[A]<</td>
</tr>
<tr>
<td>External static pressure</td>
<td>0 PS</td>
<td>0 PS</td>
</tr>
<tr>
<td>Indoor units</td>
<td>PEH-8WYB</td>
<td>PEH-10WYB</td>
</tr>
<tr>
<td>Operation temperature</td>
<td>Cooling mode: – 5 °CDB – 43 °CDB (0 °CDB – 43 °CDB with outdoor unit at lower position)</td>
<td>Heating mode: – 12 °CWB – 15 °CWB</td>
</tr>
</tbody>
</table>
This product is designed and intended for use in the residential, commercial and light-industrial environment.

Please be sure to put the contact address/telephone number on this manual before handing it to the customer.