For safe and correct use, please read this installation manual thoroughly before installing the air-conditioner unit.
Keep the service space for the maintenance from the bottom when the heat exchanger is cleaned.

① Access door ② Electrical parts box ③ Air inlet ④ Air outlet ⑤ Ceiling surface

⑥ Center of gravity

① Unit body ② Lifting machine

① Nuts (field supply) ② Washers (accessory) ③ M10 hanging bolt (field supply)

① Indoor unit's bottom surface

① Air inlet ② Refrigerant piping (gas) ③ Drain pipe ④ Refrigerant piping (liquid) ⑤ Control box ⑥ Air outlet
7.1

[Fig. 7.1.1]

- Cut here
- Remove brazed cap

[Fig. 7.1.2]

- Cool by a wet cloth

[Fig. 7.1.3]

- Thermal insulation tubing (small)
- Caution: Pull out the thermal insulation on the refrigerant piping at the site, braze the piping, and replace the insulation in its original position.
- Take care to ensure that condensation does not form on exposed copper piping.
- Refrigerant piping (liquid)
- Refrigerant piping (gas)
- Main body
- Thermal insulation tubing (large)
- Site refrigerant piping
- Ensure that there are no gaps between the insulation and the main body.
- Thermal insulation tubing (small) (supplied) 1
- Ties (large) (supplied) 4
- Ensure that there is no gap here. Place join upwards.
- Thermal insulation tubing (medium) (supplied) 2
- Thermal insulation
- Pull
- Flared pipe end
- Wrap with damp cloth
- Return to original position
- Ensure that there is no gap here.

7.2

[Fig. 7.2.1]

- Downward slope 1/100 or more
- Drain hose (Accessory)
- Indoor unit
- Collective piping
- Maximize this length to approx. 10 cm

[Fig. 7.2.2]

- Indoor unit
- Insulation pipe (short) (accessory)
- Tie band (accessory)
- Band fixing part
- Insertion margin
- Drain hose (accessory)
- Drain pipe (O.D. ø32 PVC TUBE, field supply)
- Insulating material (field supply)
- Max. 145 x 5 mm
Fig. 8.0.1
- Air inlet
- Duct
- Access door
- Ensure sufficient length to prevent short cycling
- Air outlet
- Keep duct-work length 850 mm or more

Fig. 9.1.1
- Switch 16 A
- Overcurrent protection 16 A
- Indoor unit

Fig. 9.2.1
- Terminal block for indoor transmission cable
- Terminal block for outdoor transmission cable
- Remote controller

Fig. 9.2.2
- Non-polarized
- TB15
- Remote controller
- TB5
9.3

Fig. 9.3.1

- A Screw holding cover (2pcs)
- B Cover

Fig. 9.3.2

- ⑥ Terminal bed box
- ⑦ Knockout hole
- ⑧ Remove

Fig. 9.3.3

- ③ Use PG bushing to keep the weight of the cable and external force from being applied to the power supply terminal connector. Use a cable tie to secure the cable. Wind the wire around the cable strap once to keep it from being pulled out.
- ④ Power source wiring
- ⑤ Tensile force
- ⑥ Use ordinary bushing

Fig. 9.3.4

- ① Power source terminal bed
- ② Terminal bed for indoor transmission
- ③ Terminal bed for remote controller
- ④ To 1-phase power source
- ⑤ Transmission line DC 30 V
- ⑥ Transmission line for outdoor transmission line (TB3)
- ⑦ Transmission line to the remote controller

- ⑧ Terminal bed box
- ⑨ Knockout hole
- ⑩ Remove

9.5

Fig. 9.5.1

- SWA
- SW14
- SW11
- SW5
- SW12
- SWC
- <Indoor controller board>
1. Safety precautions

1.1. Before installation and electric work

- Improper installation by the user may result in water leakage, electric shock, or fire.
- Inadequate connection and fastening may generate heat and cause a fire.
- Inadequate strength may cause the unit to fall down, resulting in injuries.
- Improper installation by the user may result in water leakage, electric shock, or fire.
- The “Safety precautions” provide very important points regarding safety. Make sure you follow them.

Symbols used in the text

: Indicates an action that must be avoided.
: Indicates that important instructions must be followed.
: Indicates a part which must be grounded.
: Indicates that caution should be taken with rotating parts. (This symbol is displayed on the main unit label.) <Color:Yellow>

: Beware of electric shock (This symbol is displayed on the main unit label.) <Color:Yellow>

Warning: Carefully read the labels affixed to the main unit.

Warning:
- Ask the dealer or an authorized technician to install the air conditioner.
- Improper installation by the user may result in water leakage, electric shock, or fire.
- Install the air conditioner according to the Installation Manual.
- If the unit is installed improperly, water leakage, electric shock, or fire may result.
- Have all electric work done by a licensed electrician according to "Electrical Facility Engineering Standard" and "Interior Wire Regulations" and the instructions given in this manual and always use a special circuit.
- - If the power source capacity is inadequate or electric work is performed improperly, electric shock and fire may result.
- - Keep the electric parts away from water (washing water etc.).
- - It might result in electric shock, catching fire or smoke.
- - Securely install the outdoor unit terminal cover (panel).
- - If the terminal cover (panel) is not installed properly, dust or water may enter the outdoor unit and fire or electric shock may result.
- - When installing and moving the air conditioner to another site, do not charge it with a refrigerant different from the refrigerant specified on the unit.
- - If a different refrigerant or air is mixed with the original refrigerant, the refrigerant cycle may malfunction and the unit may be damaged.
- - If the air conditioner is installed in a small room, measures must be taken to prevent the refrigerant concentration from exceeding the safety limit even if the refrigerant should leak.
- - Consult the dealer regarding the appropriate measures to prevent the safety limit from being exceeded. Should the refrigerant leak and cause the safety limit to be exceeded, hazards due to lack of oxygen in the room could result.
- - When moving and reinstalling the air conditioner, consult the dealer or an authorized technician.
- - If the air conditioner is installed improperly, water leakage, electric shock, or fire may result.
- - After completing installation work, make sure that refrigerant gas is not leaking.
- - If the refrigerant gas leaks and is exposed to a fan heater, stove, oven, or other heat source, it may generate noxious gases.
- - Do not reconstruct or change the settings of the protection devices.
- - If the pressure switch, thermal switch, or other protection device is shorted and operated forcibly, or parts other than those specified by Mitsubishi Electric are used, fire or explosion may result.
- - To dispose of this product, consult your dealer.
- - Do not use a leak detection additive.

1.2. Precautions for devices that use R410A refrigerant

Caution:
- Do not use the existing refrigerant piping.
- The old refrigerant and refrigerator oil in the existing piping contains a large amount of chlorine which may cause the refrigerator oil of the new unit to deteriorate.
- Use refrigerant piping made of C1230 (Cu-DHP) phosphorous deoxidized copper as specified in the JIS H3300 “Copper and copper alloy seamless pipes and tubes”. In addition, be sure that the inner and outer surfaces of the pipes are clean and free of hazardous sulphur, oxides, dust/dirt, shaving particles, oils, moisture, or any other contaminant.
- Contaminants on the inside of the refrigerant piping may cause the refrigerant residual oil to deteriorate.
- Store the piping to be used during installation indoors and keep both ends of the piping sealed until just before brazing. (Store elbows and other joints in a plastic bag.)
- If dust, dirt, or water enters the refrigerant cycle, deterioration of the oil and compressor trouble may result.
• Use ester oil, ether oil or alkylbenzene (small amount) as the refrigerator oil to coat flares and flange connections.
 - The refrigerator oil will degrade if it is mixed with a large amount of mineral oil.
• Use liquid refrigerant to fill the system.
 - If gas refrigerant is used to seal the system, the composition of the refrigerant in the cylinder will change and performance may drop.
• Do not use a refrigerant other than R410A.
 - If another refrigerant (R22, etc.) is used, the chlorine in the refrigerant may cause the refrigerator oil to deteriorate.
• Use a vacuum pump with a reverse flow check valve.
 - The vacuum pump oil may flow back into the refrigerant cycle and cause the refrigerator oil to deteriorate.
• Do not use the following tools that are used with conventional refrigerants.
 - Gauss manifold, charge hose, gas leak detector, reverse flow check valve, refrigerant charge base, vacuum gauge, refrigerant recovery equipment
 - If the conventional refrigerant and refrigerator oil are mixed in the R410A, the refrigerant may deteriorated.
 - If water is mixed in the R410A, the refrigerator oil may deteriorate.
 - Since R410A does not contain any chlorine, gas leak detectors for conventional refrigerants will not react to it.
• Do not use a charging cylinder.
 - Using a charging cylinder may cause the refrigerant to deteriorate.
• Be especially careful when managing the tools.
 - If dust, dirt, or water gets in the refrigerant cycle, the refrigerant may deteriorate.

1.3. Before getting installed

Caution:
• Do not install the unit where combustible gas may leak.
 - If the gas leaks and accumulates around the unit, an explosion may result.
• Do not use the air conditioner where food, pets, plants, precision instruments, or artwork are kept.
 - The quality of the food, etc. may deteriorate.
• Do not use the air conditioner in special environments.
 - Oil, steam, sulfuric smoke, etc. can significantly reduce the performance of the air conditioner or damage its parts.
• When installing the unit in a hospital, communication station, or similar place, provide sufficient protection against noise.
 - The inverter equipment, private power generator, high-frequency medical equipment, or radio communication equipment may cause the air conditioner to operate erroneously, or fail to operate. On the other hand, the air conditioner may affect such equipment by creating noise that disturbs medical treatment or image broadcasting.
• Do not install the unit on a structure that may cause leakage.
 - When the room humidity exceeds 80% or when the drain pipe is clogged, condensation may drip from the indoor unit. Perform collective drainage work together with the outdoor unit, as required.
• The indoor models should be installed the ceiling over than 2.5 m from floor.

1.4. Before getting installed (moved) - electrical work

Caution:
• Ground the unit.
 - Do not connect the ground wire to gas or water pipes, lightning rods, or telephone ground lines. Improper grounding may result in electric shock.

2. Indoor unit accessories

The unit is provided with the following accessories:

<table>
<thead>
<tr>
<th>No.</th>
<th>Accessories</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>Insulation pipe 25 mm small diameter</td>
<td>1</td>
</tr>
<tr>
<td>②</td>
<td>Insulation pipe 125 mm small diameter</td>
<td>1</td>
</tr>
<tr>
<td>③</td>
<td>Insulation pipe 120 mm large diameter</td>
<td>1</td>
</tr>
<tr>
<td>④</td>
<td>Tie band (small)</td>
<td>2</td>
</tr>
<tr>
<td>⑤</td>
<td>Tie band (large)</td>
<td>1</td>
</tr>
<tr>
<td>⑥</td>
<td>Drain hose</td>
<td>1</td>
</tr>
<tr>
<td>⑦</td>
<td>Washer</td>
<td>8</td>
</tr>
<tr>
<td>⑧</td>
<td>Wired remote controller</td>
<td>1</td>
</tr>
</tbody>
</table>

3. Selecting an installation site

• Select a site with sturdy fixed surface sufficiently durable against the weight of unit.
• Before installing unit, the routing to carry in unit to the installation site should be determined.
• Select a site where the unit is not affected by entering air.
• Select a site where the flow of supply and return air is not blocked.
• Select a site where refrigerant piping can easily be led to the outside.
• Select a site which allows the supply air to be distributed fully in room.
• Do not install unit at a site with oil splashing or steam in much quantity.
• Do not install unit at a site where combustible gas may generate, flow in, stagnate or leak.
• Do not install unit at a site where equipment generating high frequency waves (a high frequency wave welder for example) is provided.
• At a distance 1 m or more away from your TV and radio (to prevent picture from being distorted or noise from being generated).

• In a place as far away as possible from fluorescent and incandescent lights (so the infrared remote control can operate the air conditioner normally).

• Do not install unit at a site where fire detector is located at the supply air side. (Fire detector may operate erroneously due to the heated air supplied during heating operation.)

• When special chemical product may scatter around such as site chemical plants and hospitals, full investigation is required before installing unit. (The plastic components may be damaged depending on the chemical product applied.)

• If the unit is run for long hours when the air above the ceiling is at high temperature/high humidity (due point above 26 °C), due condensation may be produced in the indoor unit. When operating the units in this condition, add insulation material (10-20 mm) to the entire surface of the indoor unit to avoid due condensation.

• Do not install the unit where ambient temperature exceeds 35 °C [95 °F] DB.

3.1. Install the indoor unit on a ceiling strong enough to sustain its weight

⚠️ Warning:
The unit must be securely installed on a structure that can sustain its weight. If the unit is mounted on an unstable structure, it may fall down causing injuries.

4. Fixing hanging bolts

4.1 Fixing hanging bolts

[Fig. 4.1.1] (P.2)

① Center of gravity

(Give site of suspension strong structure.)

Hanging structure

• Ceiling: The ceiling structure varies from building to one another. For detailed information, consult your construction company.

Center of gravity and Product Weight

<table>
<thead>
<tr>
<th>Model name</th>
<th>W</th>
<th>L</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Product Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEA-RP250 WHA</td>
<td>1034</td>
<td>1324</td>
<td>494</td>
<td>701</td>
<td>235</td>
<td>108</td>
</tr>
</tbody>
</table>

5. Installing the unit

5.1. Hanging the unit body

◆ Bring the indoor unit to an installation site as it is packed.

◆ To hang the indoor unit, use a lifting machine to lift and pass through the hanging bolts.

[Fig. 5.1.1] (P.2)

① Unit body
② Lifting machine

[Fig. 5.1.2] (P.2)

① Nuts (field supply)
② Washers (accessory)
③ M10 hanging bolt (field supply)

5.2. Transporting the heat exchanger unit and the fan unit separately

◆ Refer to the “Manipulation Details” label on the unit for how to separate the heat exchanger unit and the fan unit.

⚠️ Caution:
Heat exchanger unit and the fan unit cannot be installed in separate locations. Doing so will cause water leakage.

5.3. Confirming the unit’s position and fixing hanging bolts

◆ Use the gage supplied with the panel to confirm that the unit body and hanging bolts are positioned in place. If they are not positioned in place, it may result in dew drops due to wind leak. Be sure to check the positional relationship.

◆ Use a level to check that the surface indicated by ② is at level. Ensure that the hanging bolt nuts are tightened to fix the hanging bolts.

◆ To ensure that drain is discharged, be sure to hang the unit at level using a level.

[Fig. 5.3.1] (P.2)

⑤ Indoor unit’s bottom surface

⚠️ Caution:
Install the unit in horizontal position. If the side with drain port is installed higher, water leakage may be caused.

6. Refrigerant pipe and drain pipe specifications

To avoid dew drops, provide sufficient antisweating and insulating work to the refrigerant and drain pipes.

When using commercially available refrigerant pipes, be sure to wind commercially available insulating material (with a heat-resisting temperature of more than 100 °C and thickness given below) onto both liquid and gas pipes. Insulate all indoor pipes with form polyethylene insulation with a minimum density of 0.03 and a thickness as specified in the table below.

① Select the thickness of insulating material by pipe size.

<table>
<thead>
<tr>
<th>Pipe size</th>
<th>Insulating material’s thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4 mm to 25.4 mm</td>
<td>More than 10 mm</td>
</tr>
<tr>
<td>28.6 mm to 38.1 mm</td>
<td>More than 15 mm</td>
</tr>
</tbody>
</table>

② If the unit is used on the highest story of a building and under conditions of high temperature and humidity, it is necessary to use pipe size and insulating material’s thickness more than those given in the table above.

③ If there are customer’s specifications, simply follow them.
6.1. Refrigerant pipe and drain pipe specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Model</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerant pipe (Brazing connection)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid pipe</td>
<td>ø 9.52</td>
<td></td>
</tr>
<tr>
<td>Gas pipe</td>
<td>ø 22.2</td>
<td></td>
</tr>
<tr>
<td>Drain pipe</td>
<td>O.D. ø 32</td>
<td></td>
</tr>
</tbody>
</table>

6.2. Refrigerant pipe, drain pipe

7. Connecting refrigerant pipes and drain pipes

7.1. Refrigerant piping work

This piping work must be done in accordance with the installation manuals for both outdoor unit.

- For constraints on pipe length and allowable difference of elevation, refer to the outdoor unit manual.
- The method of pipe connection is brazing connection.

Caution:
- Install the refrigerant piping for the indoor unit in accordance with the following.
 1. Cut the tip of the indoor unit piping, remove the gas, and then remove the brazed cap.
 2. Pull out the thermal insulation on the site refrigerant piping, braze the unit piping, and replace the insulation in its original position.
- Wrap the piping with insulating tape.

Note:
- When blazing the refrigerant pipes, be sure to blaze, after covering a wet cloth to the pipes of the units in order to prevent it from burning and shrinking by heat.

7.2. Drain piping work

- Ensure that the drain piping is downward (pitch of more than 1/100) to the outdoor (discharge) side. Do not provide any trap or irregularity on the way.
- Ensure that any cross-wise drain piping is less than 20 m (excluding the difference of elevation). If the drain piping is long, provide metal braces to prevent it from waving. Never provide any air vent pipe. Otherwise drain may be ejected.
- Use a high vinyl chloride pipe O.D. ø32 for drain piping.
- Ensure that collected pipes are 10 cm lower than the unit body's drain port.
- Do not provide any odor trap at the drain discharge port.
- Put the end of the drain piping in a position where no odor is generated.
- Do not put the end of the drain piping in any drain where ionic gases are generated.

Warning:
When installing and moving the unit, do not charge it with refrigerant other than the refrigerant specified on the unit.
- Mixing of a different refrigerant, air, etc. may cause the refrigerant cycle to malfunction and result in severe damage.

Caution:
- Use refrigerant piping made of C1220 (Cu-DHP) phosphorus deoxidized copper as specified in the JIS H3300 “Copper and copper alloy seamless pipes and tubes”. In addition, be sure that the inner and outer surfaces of the pipes are clean and free of hazardous sulphur, oxides, dust/dirt, shaving particles, oils, moisture, or any other contaminant.
- Never use existing refrigerant piping.
 - The large amount of chlorine in conventional refrigerant and refrigerator oil in the existing piping will cause the new refrigerant to deteriorate.
 - Store the piping to be used during installation indoors and keep both ends of the piping sealed until just before brazing.
 - If dust, dirt, or water gets into the refrigerant cycle, the oil will deteriorate and the compressor may fail.

Diagram:

![Diagram](image-url)

CAUTION:
- Never use existing refrigerant piping.
- The large amount of chlorine in conventional refrigerant and refrigerator oil in the existing piping will cause the new refrigerant to deteriorate.
- Store the piping to be used during installation indoors and keep both ends of the piping sealed until just before brazing.
- If dust, dirt, or water gets into the refrigerant cycle, the oil will deteriorate and the compressor may fail.

Cautions On Refrigerant Piping

- Be sure to use non-oxidative brazing for brazing to ensure that no foreign matter or moisture enter into the pipe.
- Be sure to apply refrigerating machine oil over the flare connection seating surface and tighten the connection using a double spanner.
- Provide a metal brace to support the refrigerant pipe so that no load is imparted to the indoor unit end pipe. This metal brace should be provided 50 cm away from the indoor unit’s flare connection.
8. Duct work

- When connecting ducts, insert a canvas duct between the main body and the duct.
- Use non-combustible duct components.
- Install sufficient thermal insulation to prevent condensation forming on outlet duct flanges and outlet ducts.

⚠️ Caution:
- Keep the distance between the inlet grille and the fan over 850 mm. If it is less than 850 mm, install a safety guard not to touch the fan.

9. Electrical wiring

Precautions on electrical wiring

⚠️ Warning:
Electrical work should be done by qualified electrical engineers in accordance with “Engineering Standards For Electrical Installation” and supplied installation manuals. Special circuits should also be used. If the power circuit lacks capacity or has an installation failure, it may cause a risk of electric shock or fire.

1. Be sure to install an earth leakage breaker to the power.
2. Install the unit to prevent that any of the control circuit cables (remote controller, transmission cables) is brought in direct contact with the power cable outside the unit.
3. Ensure that there is no slack on all wire connections.
4. Some cables (power, remote controller, transmission cables) above the ceiling may be bitten by mouses. Use as many metal pipes as possible to insert the cables into them for protection.
5. Never connect the power cable to leads for the transmission cables. Otherwise the cables would be broken.

6. Be sure to connect control cables to the indoor unit, remote controller, and the outdoor unit.
7. Put the unit to the ground on the outdoor unit side.
8. Select control cables from the conditions given in page 11.

⚠️ Caution:
Be sure to put the unit to the ground on the outdoor unit side. Do not connect the earth cable to any gas pipe, water pipe, lightening rod, or telephone earth cable. Incomplete grounding may cause a risk of electric shock.

Table 1

<table>
<thead>
<tr>
<th>Transmission cable length</th>
<th>Facility example (for noise judgment)</th>
<th>Types of transmission cables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 80 m</td>
<td>Residence or independent store</td>
<td>VCTF, VCTFK, CVV, CVS, VVR,</td>
</tr>
<tr>
<td></td>
<td>without noise</td>
<td>VVF, VCT or shielding wire</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CVVS or CPEVS</td>
</tr>
</tbody>
</table>

2. Remote controller cables

<table>
<thead>
<tr>
<th>Types of cables</th>
<th>Cable diameter</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA remote controller</td>
<td>0.3 to 1.25 mm²</td>
<td>Less than 200 m</td>
</tr>
</tbody>
</table>

9.1. Power supply wiring

- Power supply cords of appliances shall not be lighter than design 245 IEC 57 or 227 IEC 57.
- A switch with at least 3 mm contact separation in each pole shall be provided by the Air conditioner installation.

Power cable size: more than 2.0 mm²

[Fig. 9.1.1] (P.4)

<table>
<thead>
<tr>
<th>Switch 16 A</th>
<th>Overcurrent protection 16 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor unit</td>
<td></td>
</tr>
</tbody>
</table>

[Selecting non-fuse breaker (NF) or earth leakage breaker (NV)]
To select NF or NV instead of a combination of Class B fuse with switch, use the following:

- In the case of Class B fuse rated 15 A or 20 A,
 - NF model name (MITSUBISHI): NF30-CS (15 A) (20 A)
 - NV model name (MITSUBISHI): NV30-CA (15 A) (20 A)

Use an earth leakage breaker with a sensitivity of less than 30 mA 0.1 s.

⚠️ Caution:
Do not use anything other than the correct capacity breaker and fuse. Using fuse, wire or copper wire with too large capacity may cause a risk of malfunction or fire.

9.2. Connecting remote controller, indoor and outdoor transmission cables

- Connect indoor unit TB5 and outdoor unit TB3. (Non-polarized 2-wire)
 - The “S” on indoor unit TB5 is a shielding wire connection. For specifications about the connecting cables, refer to the outdoor unit installation manual.
- Install a remote controller following the manual supplied with the remote controller.
- Connect the “1” and “2” on indoor unit TB15 to a MA remote controller. (Non-polarized 2-wire)
• Connect the remote controller's transmission cable within 10 m using a 0.75 mm² core cable. If the distance is more than 10 m, use a 1.25 mm² junction cable.

Fig. 9.2.1 (P.4) MA Remote controller
 ① Terminal block for indoor transmission cable
 ② Terminal block for outdoor transmission cable
 ③ Remote controller

• DC 9 to 13 V between 1 and 2 (MA remote controller)

Fig. 9.2.2 (P.4) MA Remote controller
 ① Non-polarized
 ② TB15
 ③ Remote Controller
 ④ TB5

Caution:
Install wiring so that it is not tight and under tension. Wiring under tension may break, or overheat and burn.

9.3. Connecting electrical connections

Please identify the model name of the operation manual attached on the terminal bed box cover with that shown on the rating name plate.

1. Remove the screw (2pcs) holding the cover to dismount the cover.

Fig. 9.3.1 (P.5)
 ① Screw holding cover (2pcs)
 ② Cover

2. Open knockout holes
 (Recommend to use a screwdriver or the like for this work.)

Fig. 9.3.2 (P.5)
 ① Terminal bed box
 ② Knockout hole
 ③ Remove

3. Fix power source wiring to terminal bed box by using buffer bushing for tensile force. (PG connection or the like.) Connect transmission wiring to transmission terminal bed through the knockout hole of terminal bed box using ordinary bushing.

Connect the power source, Earth, transmission and remote controller wiring. The dismounting of the terminal bed box is not needed.

Fig. 9.3.3 (P.5)
 ① Use PG bushing to keep the weight of the cable and external force from being applied to the power supply terminal connector. Use a cable tie to secure the cable.
Wind the wire around the cable strap once to keep it from being pulled out.
 ② Power source wiring
 ③ Use ordinary bushing
 ④ Power source terminal bed
 ⑤ Terminal bed for indoor transmission
 ⑥ Terminal bed for remote controller
 ⑦ Transmission line DC 30 V
 ⑧ Terminal bed for outdoor transmission line (TB3)
 ⑨ Transmission line to the remote controller
 [Shield wire connection]
 ⑩ Terminal bed
 ⑪ Round terminal
 ⑫ Shield wire
 ⑬ Insulation tape (To keep the earth wire of the shielded cable from coming in contact with the transmission terminal)

5. After wiring is complete, make sure again that there is no slack on the connections, and attach the cover onto the terminal bed box in the reverse order of removal.

Notes:
• Do not pinch the cables or wires when attaching the terminal bed box cover. Doing so may cause a risk of disconnection.
• When accommodating the terminal bed box, make sure that the connectors on the box side are not removed. If removed, it cannot operate normally.

9.4. External I/O specifications

Caution:
1. Wiring should be covered by insulation tube with supplementary insulation.
2. Use relays or switches with IEC or equivalent standard.
3. The electric strength between accessible parts and control circuit should have 2750 V or more.

9.5. Selecting the external static pressure

As the factory setting is for use under an external static pressure of 150 Pa, no switch operation is needed when using under the standard condition.

<table>
<thead>
<tr>
<th>External static pressure</th>
<th>Switch operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 Pa</td>
<td>SWA 1 2</td>
</tr>
<tr>
<td>75 Pa</td>
<td>SWC 1 2</td>
</tr>
<tr>
<td>100 Pa</td>
<td>SWA 1 2</td>
</tr>
<tr>
<td>150 Pa</td>
<td>SWC 1 2</td>
</tr>
</tbody>
</table>

9.6. Setting addresses

(Be sure to operate with the main power turned OFF.)

• There are two types of rotary switch setting available: setting addresses 1 to 9 and over 10, and setting branch numbers.
 ① How to set addresses
 Example: If Address is “1”, remain SW12 (for over 10) at “0”, and match SW11 (for 1 to 9) with “1”.
• The rotary switches are all set to “0” when shipped from the factory. These switches can be used to set unit addresses and branch numbers at will.

9.7. Sensing room temperature with the built-in sensor in a remote controller

If you want to sense room temperature with the built-in sensor in a remote controller, set SW1-1 on the control board to “ON”. The setting of SW1-7 and SW1-8 as necessary also makes it possible to adjust the air flow at a time when the heating thermometer is OFF.

Note:
• To perform the auto cooling/heating operation, use the built-in sensor in a remote controller or the optional remote sensor.
This product is designed and intended for use in the residential, commercial and light-industrial environment.

The product at hand is based on the following EU regulations:

- Low Voltage Directive 2006/95/EC

Please be sure to put the contact address/telephone number on this manual before handing it to the customer.