For safe and correct use, read this manual and the indoor unit installation manual thoroughly before installing the air-conditioner unit.
1. Safety precautions

► Before installing the unit, make sure you read all the “Safety precautions.”
► Please report to or take consent by the supply authority before connection to the system.

Caution:
Describes precautions that must be observed to prevent damage to the unit.

Warning:
Describes precautions that must be observed to prevent danger of injury or death to the user.

Caution:
Describes precautions that must be observed to prevent damage to the unit.

Warning:
Describes precautions that must be observed to prevent danger of injury or death to the user.

1.1. Before installation

Caution:
• Do not use the unit in an unusual environment. If the air conditioner is installed in areas exposed to steam, volatile oil (including machine oil), or sulfuric gas, areas exposed to high salt content such as the seaside, or areas where the unit will be covered by snow, the performance can be significantly reduced and the internal parts can be damaged.
• Do not install the unit where combustible gases may leak, be produced, flow, or accumulate. If combustible gas accumulates around the unit, fire or explosion may result.
• Do not install the unit in areas where high-frequency medical equipment, high-frequency communications, and telecommunications equipment are not performed correctly, water leakage, electric shock, or fire may result.
• Do not install the unit in areas where the unit will be covered by snow, the performance can be significantly reduced and the internal parts can be damaged.

Warning:
• The outdoor unit produces condensation during the heating operation. Make sure to provide drainage around the outdoor unit if such condensation is likely to cause damage.
• When installing the unit in a hospital or communications office, be prepared for noise and electronic interference. Inverters, home appliances, high-frequency medical equipment, and radio communications equipment can cause the air conditioner to malfunction or breakdown. The air conditioner may also affect medical equipment, disturbing medical care, and communications equipment, harming the screen display quality.

1.2. Before installation (relocation)

Caution:
• Be extremely careful when transporting or installing the units. 2 or more persons are needed to handle the unit, as it weighs 20 kg or more. Do not grasp the packaging bands. Wear protective gloves to remove the unit from the packaging and to move it, as you can injure your hands on the fins or the edge of other parts.
• Be sure to safely dispose of the packaging materials. Packaging materials, such as nails and other metal or wooden parts may cause stabs or other injuries.
• The base and attachments of the outdoor unit must be periodically checked for looseness, cracks or other damage. If such defects are left uncorrected, the unit may fall down and cause damage or injuries.
• Do not clean the air conditioner unit with water. Electric shock may result.
• Tighten all flare nuts to specification using a torque wrench. If tightened too much, the flare nut can break after an extended period and refrigerant can leak out.
1. Safety precautions

1.3. Before electric work

Caution:
• Be sure to install circuit breakers. If not installed, electric shock may result.
• For the power lines, use standard cables of sufficient capacity. Otherwise, a short circuit, overheating, or fire may result.
• When installing the power lines, do not apply tension to the cables. If the connections are loosened, the cables can snap or break and overheating or fire may result.

1.4. Before starting the test run

Caution:
• Turn on the main power switch more than 12 hours before starting operation. Starting operation just after turning on the power switch can severely damage the internal parts. Keep the main power switch turned on during the operation season.
• Before starting operation, check that all panels, guards and other protective parts are correctly installed. Rotating, hot, or high voltage parts can cause injuries.
• Do not touch any switch with wet hands. Electric shock may result.

1.5. Using R410A refrigerant air conditioners

Caution:
• Use C1220 copper phosphorus, for copper and copper alloy seamless pipes, to connect the refrigerant pipes. Make sure the insides of the pipes are clean and do not contain any harmful contaminants such as sulfuric compounds, oxidants, debris, or dust. Use pipes with the specified thickness. (Refer to 4.1.) Note the following if reusing existing pipes that carried R22 refrigerant.
 - Replace the existing flare nuts and flare the flared sections again.
 - Do not use thin pipes. (Refer to 4.1.)
• Store the pipes to be used during installation indoors and keep both ends of the pipes sealed until just before brazing. (Leave elbow joints, etc. in their packaging.) If dust, debris, or moisture enters the refrigerant lines, oil deterioration or compressor breakdown may result.
• Use ester oil, ether oil, alkylbenzene oil (small amount) as the refrigeration oil applied to the flared sections. If mineral oil is mixed in the refrigeration oil, oil deterioration may result.

• Be sure to ground the unit. Do not connect the ground wire to gas or water pipes, lightning rods, or telephone grounding lines. If the unit is not properly grounded, electric shock may result.
• Use circuit breakers (ground fault interrupter, isolating switch (+B fuse), and molded case circuit breaker) with the specified capacity. If the circuit breaker capacity is larger than the specified capacity, breakdown or fire may result.

1.6. Accessories of outdoor unit (Fig. 1-1) (RP170/200)

The parts show in the left are the accessories of this unit, which are affixed to the inside of the service panel.

Fig. 1-1

2. Installation location

2.1. Refrigerant pipe (Fig. 2-1)

Check that the difference between the heights of the indoor and outdoor units, the length of refrigerant pipe, and the number of bends in the pipe are within the limits shown below.

<table>
<thead>
<tr>
<th>Models</th>
<th>Pipe length (one way)</th>
<th>Height difference</th>
<th>Number of bends (one way)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP71</td>
<td>Max. 50 m</td>
<td>Max. 30 m</td>
<td>Max. 15</td>
</tr>
<tr>
<td>RP100, 125, 140</td>
<td>Max. 75 m</td>
<td>Max. 30 m</td>
<td>Max. 15</td>
</tr>
<tr>
<td>RP170, 200</td>
<td>Max. 75 m</td>
<td>Max. 30 m</td>
<td>Max. 15</td>
</tr>
</tbody>
</table>

• Height difference limitations are binding regardless of which unit, indoor or outdoor, is positioned higher.
 - Indoor unit
 - Outdoor unit
2. Installation location

2.2. Choosing the outdoor unit installation location

- Avoid locations exposed to direct sunlight or other sources of heat.
- Select a location from which noise emitted by the unit will not inconvenience neighbors.
- Select a location permitting easy wiring and pipe access to the power source and indoor unit.
- Avoid locations where combustible gases may leak, be produced, flow, or accumulate.
- Note that water may drain from the unit during operation.
- Avoid locations where the unit can be covered by snow. In areas where heavy snowfall is anticipated, special precautions such as raising the installation location or installing a hood on the air intake must be taken to prevent the snow from blocking the air intake or blowing directly against it. This can reduce the airflow and a malfunction may result.
- Avoid locations exposed to oil, steam, or sulfuric gas.
- Use the transportation handles of the outdoor unit to transport the unit. If the unit is carried from the bottom, hands or fingers may be pinched.

2.2.2. Choosing the outdoor unit installation location

2.3. Outline dimensions (Outdoor unit) (Fig. 2-2)

2.4. Ventilation and service space

2.4.1. Windy location installation

When installing the outdoor unit on a rooftop or other location unprotected from the wind, situate the air outlet of the unit so that it is not directly exposed to strong winds. Strong wind entering the air outlet may impede the normal airflow and a malfunction may result.

The following shows 3 examples of precautions against strong winds.

1. Face the air outlet towards the nearest available wall about 50 cm away from the wall. (Fig. -3)
2. Install an optional air guide if the unit is installed in a location where strong winds from a typhoon, etc. may directly enter the air outlet. (Fig. -4)
 A. Air outlet guide
3. Position the unit so that the air outlet blows perpendicularly to the seasonal wind direction, if possible. (Fig. -5)
 B. Wind direction

2.4.2. When installing a single outdoor unit (Refer to the last page)

Minimum dimensions are as follows, except for Max., meaning Maximum dimensions, indicated.

The figures in parentheses are for RP71 models.

Refer to the figures for each case.

1. Obstacles at rear only (Fig. 2-6)
2. Obstacles at rear and above only (Fig. 2-7)
3. Obstacles at rear and sides only (Fig. 2-8)
4. Obstacles at front only (Fig. 2-9)
 * When using an optional air outlet guide, the clearance for RP100 - 200 models is 500 mm or more.
5. Obstacles at front and rear only (Fig. 2-10)
 * When using an optional air outlet guide, the clearance for RP100 - 200 models is 500 mm or more.
6. Obstacles at rear, sides, and above only (Fig. 2-11)
 • Do not install the optional air outlet guides for upward airflow.

2.4.3. When installing multiple outdoor units (Refer to the last page)

Leave 10 mm space or more between the units.

The figures in parentheses are for RP71 models.

1. Obstacles at rear only (Fig. 2-12)
2. Obstacles at rear and above only (Fig. 2-13)
 • No more than 3 units must be installed side by side. In addition, leave space as shown.
 • Do not install the optional air outlet guides for upward airflow.
3. Obstacles at front only (Fig. 2-14)
 * When using an optional air outlet guide, the clearance for RP100 - 200 models is 1000 mm or more.
4. Obstacles at front and rear only (Fig. 2-15)
 * When using an optional air outlet guide, the clearance for RP100 - 200 models is 1000 mm or more.
5. Single parallel unit arrangement (Fig. 2-16)
 * When using an optional air outlet guide installed for upward airflow, the clearance is 1000 (500) mm or more.
6. Multiple parallel unit arrangement (Fig. 2-17)
 * When using an optional air outlet guide installed for upward airflow, the clearance is 1500 (1000) mm or more.
7. Stacked unit arrangement (Fig. 2-18)
 • The units can be stacked up to 2 units high.
 • No more than 2 stacked units must be installed side by side. In addition, leave space as shown.
3. Installing the outdoor unit

- Be sure to install the unit in a sturdy, level surface to prevent rattling noises during operation. (Fig. 3-1)

<table>
<thead>
<tr>
<th>Foundation specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation bolt</td>
</tr>
<tr>
<td>Thickness of concrete</td>
</tr>
<tr>
<td>Length of bolt</td>
</tr>
<tr>
<td>Weight-bearing capacity</td>
</tr>
</tbody>
</table>

- Make sure that the length of the foundation bolt is within 30 mm of the bottom surface of the base.
- Secure the base of the unit firmly with four-M10 foundation bolts in sturdy locations.

Installing the outdoor unit
- Do not block the vent. If the vent is blocked, operation will be hindered and breakdown may result.
- In addition to the unit base, use the installation holes on the back of the unit to attach wires, etc., if necessary to install the unit. Use self-tapping screws (ø5 × 15 mm or less) and install on site.

Warning:
- The unit must be securely installed on a structure that can sustain its weight. If the unit is mounted on an unstable structure, it may fall down and cause damage or injuries.
- The unit must be installed according to the instructions in order to minimize the risk of damage from earthquakes, typhoons, or strong winds. An incorrectly installed unit may fall down and cause damage or injuries.

4. Installing the refrigerant piping

4.1. Precautions for devices that use R410A refrigerant
- Refer to 1.5. for precautions not included below on using air conditioners with R410A refrigerant.
- Use ester oil, ether oil, alkylbenzene oil (small amount) as the refrigeration oil applied to the flared sections.
- Use C1220 copper phosphorus, for copper and copper alloy seamless pipes, to connect the refrigerant pipes. Use refrigerant pipes with the thicknesses specified in the table to the below. Make sure the insides of the pipes are clean and do not contain any harmful contaminants such as sulfuric compounds, oxidants, debris, or dust. Always apply no-oxidation brazing when brazing the pipes, otherwise, the compressor will be damaged.

<table>
<thead>
<tr>
<th>Pipe size (mm)</th>
<th>Ø6.35</th>
<th>Ø9.52</th>
<th>Ø12.7</th>
<th>Ø15.88</th>
<th>Ø19.05</th>
<th>Ø22.2</th>
<th>Ø25.4</th>
<th>Ø28.58</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness (mm)</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Warning:
- When installing or relocating, or servicing the air conditioner, use only the specified refrigerant (R410A) to charge the refrigerant lines. Do not mix it with any other refrigerant and do not allow air to remain in the lines.
- If air is mixed with the refrigerant, then it can be the cause of abnormal high pressure in the refrigerant line, and may result in an explosion and other hazards.
- The use of any refrigerant other than that specified for the system will cause mechanical failure or system malfunction or unit breakdown. In the worst case, this could lead to a serious impediment to securing product safety.
- Do not use pipes thinner than those specified above.
- Use 1/2 H or H pipes if the diameter is 22.2 mm or larger.
4. Installing the refrigerant piping

4.2. Connecting pipes (Fig. 4-1)
- When commercially available copper pipes are used, wrap liquid and gas pipes with commercially available insulation materials (heat-resistant to 100 °C or more, thickness of 12 mm or more).
- The indoor parts of the drain pipe should be wrapped with polyethylene foam insulation materials (specific gravity of 0.03, thickness of 9 mm or more).
- Apply thin layer of refrigerant oil to pipe and joint seating surface before tightening flare nut.
- Use 2 wrenches to tighten piping connections.
- Use leak detector or soapy water to check for gas leaks after connections are completed.
- Apply refrigerating machine oil over the entire flare seat surface.
- Use the flare nuts for the following pipe size.

<table>
<thead>
<tr>
<th>Pipe size (mm)</th>
<th>Flare tool for R410A Flare tool for R22/R407C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ø15.88</td>
<td>ø25.4</td>
</tr>
<tr>
<td>ø9.5 (3/8")</td>
<td>ø19.05</td>
</tr>
</tbody>
</table>

Copper pipe O.D. mm | Flare dimensions ØA dimensions (mm) | ø6.35 | ø6.35 | ø9.52 | ø12.7 | ø12.7 | ø15.88 | ø15.88 | ø19.05 |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ø9.52</td>
<td>ø9.52</td>
<td>ø9.52</td>
<td>ø9.52</td>
<td>ø9.52</td>
<td>ø9.52</td>
<td>ø9.52</td>
<td>ø9.52</td>
<td>ø9.52</td>
<td></td>
</tr>
<tr>
<td>ø12.7</td>
<td>ø12.7</td>
<td>ø12.7</td>
<td>ø12.7</td>
<td>ø12.7</td>
<td>ø12.7</td>
<td>ø12.7</td>
<td>ø12.7</td>
<td>ø12.7</td>
<td></td>
</tr>
<tr>
<td>ø15.88</td>
<td>ø15.88</td>
<td>ø15.88</td>
<td>ø15.88</td>
<td>ø15.88</td>
<td>ø15.88</td>
<td>ø15.88</td>
<td>ø15.88</td>
<td>ø15.88</td>
<td></td>
</tr>
<tr>
<td>ø19.05</td>
<td>ø19.05</td>
<td>ø19.05</td>
<td>ø19.05</td>
<td>ø19.05</td>
<td>ø19.05</td>
<td>ø19.05</td>
<td>ø19.05</td>
<td>ø19.05</td>
<td></td>
</tr>
</tbody>
</table>

Flare cutting dimensions Flare nut tightening torque

4.3. Refrigerant piping (Fig. 4-4)
- Perform refrigerant piping connections for the indoor/outdoor unit when the outdoor unit's stop valve is completely closed.
- Vacuum-purge air from the indoor unit and the connection piping.
- After connecting the refrigerant pipes, check the connected pipes and the indoor unit for gas leaks. (Refer to 4.4 Refrigerant pipe airtight testing method)
- A high-performance vacuum pump is used at the stop valve service port to maintain a vacuum for an adequate time (at least one hour after reaching –101 kPa [9 Torr]) in order to dry the inside of the pipes. Always check the degree of vacuum at the gauge manifold. If there is any moisture left in the pipe, the degree of vacuum is sometimes not reached with short-time vacuum application. After vacuum drying, completely open the stop valves (both liquid and gas) for the outdoor unit. This completely links the indoor and outdoor refrigerant circuits.
- If the vacuum drying is inadequate, air and water vapor remain in the refrigerant circuits and can cause abnormal rise of high pressure, abnormal drops of low pressure, deterioration of the refrigerating machine oil due to moisture, etc.
- When usual pipe sealing is used, refer to Table 1 for flaring of R410A refrigerant pipes.
- The size adjustment gauge can be used to confirm A measurements.

<table>
<thead>
<tr>
<th>Pipe size (mm)</th>
<th>ø6.35 (1/4")</th>
<th>ø9.52 (3/8")</th>
<th>ø12.7 (1/2")</th>
<th>ø15.88 (5/8")</th>
<th>ø19.05 (3/4")</th>
</tr>
</thead>
<tbody>
<tr>
<td>ø6.35</td>
<td>0.0 0.0</td>
<td>0.0 0.0</td>
<td>0.0 0.0</td>
<td>0.0 0.0</td>
<td>0.0 0.0</td>
</tr>
<tr>
<td>ø9.52</td>
<td>0.0 0.0</td>
<td>1.0 1.0</td>
<td>1.0 1.0</td>
<td>1.0 1.0</td>
<td>1.0 1.0</td>
</tr>
<tr>
<td>ø12.7</td>
<td>0.0 0.0</td>
<td>1.0 1.0</td>
<td>1.0 1.0</td>
<td>1.0 1.0</td>
<td>1.0 1.0</td>
</tr>
<tr>
<td>ø15.88</td>
<td>0.0 0.0</td>
<td>1.0 1.0</td>
<td>1.0 1.0</td>
<td>1.0 1.0</td>
<td>1.0 1.0</td>
</tr>
<tr>
<td>ø19.05</td>
<td>0.0 0.0</td>
<td>1.0 1.0</td>
<td>1.0 1.0</td>
<td>1.0 1.0</td>
<td>1.0 1.0</td>
</tr>
</tbody>
</table>

Use the following procedure for connecting the gas-side piping. (Fig.4-3) (RP170 / 200)
1. Braze the joint pipe provided to the outdoor unit using locally procured brazing materials and Local piping without oxygen.
2. Connect the joint pipe to the gas-side Stop valve.
- Use 2 wrenches to tighten the flare nut.
- If order is reversed, refrigerant leak occurs because of the part damaging by brazing fire.
- For PEA-RP170, 200 WHA

The method of pipe connection is brazing connection.

<table>
<thead>
<tr>
<th>Pipe size (mm)</th>
<th>ø25.4</th>
<th>ø25.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ø9.52</td>
<td>ø9.52</td>
<td></td>
</tr>
</tbody>
</table>

Warning:
When installing the unit, securely connect the refrigerant pipes before starting the compressor.
4. Installing the refrigerant piping

4.4. Refrigerant pipe airtight testing method (Fig. 4-5)
(1) Connect the testing tools.
• Make sure the stop valves ①② are closed and do not open them.
• Add pressure to the refrigerant lines through the service port ③ of the liquid stop valve ④.
(2) Do not add pressure to the specified pressure all at once; add pressure little by little.
① Pressurize to 0.5 MPa (5 kgf/cm²), wait 5 minutes, and make sure the pressure does not decrease.
② Pressurize to 1.5 MPa (15 kgf/cm²), wait 5 minutes, and make sure the pressure does not decrease.
③ Pressurize to 4.15 MPa (41.5 kgf/cm²) and measure the surrounding temperature and refrigerant pressure.
(3) If the specified pressure holds for about one day and does not decrease, the pipes have passed the test and there are no leaks.
• If the surrounding temperature changes by 1 °C, the pressure will change by about 0.01 MPa (0.1 kgf/cm²). Make the necessary corrections.
(4) If the pressure decreases in steps (2) or (3), there is a gas leak. Look for the source of the gas leak.

4.5. Stop valve opening method
The stop valve opening method varies according to the outdoor unit model. Use the appropriate method to open the stop valves.
(1) Gas side of RP100 - 200 (Fig. 4-6)
① Remove the cap, pull the handle toward you and rotate 1/4 turn in a counterclockwise direction to open.
② Make sure that the stop valve is open completely, push in the handle and rotate the cap back to its original position.
(2) Liquid side of RP100 - 200 and Gas/Liquid side of RP71 (Fig. 4-7)
① Remove the cap and turn the valve rod counterclockwise as far as it will go with the use of a 4 mm hexagonal wrench. Stop turning when it hits the stopper.
② Turn the cap back to its original position.
③ Make sure that the stop valve is open completely, push in the handle and rotate the cap back to its original position.

Refrigerant pipes are protectively wrapped for RP71 - 200
• The pipes can be protectively wrapped up to a diameter of ø90 before or after connecting the pipes. Cut out the knockout in the pipe cover following the groove and wrap the pipes.
Pipe inlet gap for RP71 - 200
• Use putty or sealant to seal the pipe inlet around the pipes so that no gaps remain. (If the gaps are not closed, noise may be emitted or water and dust will enter the unit and breakdown may result.)

Precautions when using the charge valve (Fig. 4-8)
Do not tighten the service port too much when installing it, otherwise, the valve core could be deformed and become loose, causing a gas leak.
After positioning section ② in the desired direction, turn section ③ only and tighten it.
Do not further tighten sections ④ and ⑤ together after tightening section ③.

4.6. Addition of refrigerant
• Additional charging is not necessary if the pipe length does not exceed 30 m.
• If the pipe length exceeds 30 m, charge the unit with additional R410A refrigerant according to the permitted pipe lengths in the chart below.
 * When the unit is stopped, charge the unit with the additional refrigerant through the liquid stop valve after the pipe extensions and indoor unit have been vacuumized. When the unit is operating, add refrigerant to the gas check valve using a safety charger. Do not add liquid refrigerant directly to the check valve.
 * After charging the unit with refrigerant, note the added refrigerant amount on the service label (attached to the unit).
Refer to the “1.5. Using R410A refrigerant air conditioners” for more information.
4. Installing the refrigerant piping

Maximum pipe length (RP170-RP200)

<table>
<thead>
<tr>
<th>Liquid pipe (mm)</th>
<th>O.D.</th>
<th>φ9.52</th>
<th>φ12.7</th>
<th>φ15.88</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td>t0.8</td>
<td>t0.8</td>
<td>t1.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gas pipe (mm)</th>
<th>O.D.</th>
<th>φ22.2</th>
<th>φ25.4</th>
<th>φ28.58</th>
<th>φ22.2</th>
<th>φ25.4</th>
<th>φ28.58</th>
<th>φ31.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td>t1.0</td>
<td>t1.0</td>
<td>t1.0</td>
<td>t1.0</td>
<td>t1.0</td>
<td>t1.0</td>
<td>t1.0</td>
<td>t1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RP170</th>
<th>RP200</th>
</tr>
</thead>
<tbody>
<tr>
<td>50m</td>
<td>75m</td>
</tr>
<tr>
<td>[30m]</td>
<td>[30m]</td>
</tr>
</tbody>
</table>

Note: Be sure to use hard (tempered) one for pipe over φ22.2.

<Marks in the table above>

- ○: It can be used.
- □: Cooling capacity is lowered.
- △: Additional refrigerant charge is required when the pipe length exceeds 20m.

The maximum pipe length
Charge-less pipe length

![Image](image.png)

RP170, 200

Additional refrigerant amount when the liquid pipe of the larger diameter is used.

1:1 system

<table>
<thead>
<tr>
<th>Liquid pipe</th>
<th>When the pipe length exceeds 20 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ15.88</td>
<td>Additional refrigerant amount (\Delta w (g) = 180 \times \text{Pipe length (m)} - 3000)</td>
</tr>
</tbody>
</table>

* \(\Delta w (g) \leq 0 \): Additional charge is not necessary.

Simultaneous twin/triple system

<table>
<thead>
<tr>
<th>When the pipe length (main piping and branch piping) exceeds 20 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional refrigerant amount (\Delta w (g) = (180 \times L1) + (120 \times L2) + (90 \times L3) + (30 \times L4) - 3000)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L1: φ15.88 liquid pipe length (m)</th>
<th>L2: φ12.7 liquid pipe length (m)</th>
<th>L3: φ9.52 liquid pipe length (m)</th>
<th>L4: φ6.35 liquid pipe length (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta w (g) \leq 0): Additional charge is not necessary.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Installing the refrigerant piping

4.7. Precautions when reusing existing R22 refrigerant pipes

• Refer to the flowchart below to determine if the existing pipes can be used and if it is necessary to use a filter dryer.
• If the diameter of the existing pipes is different from the specified diameter, refer to technological data materials to confirm if the pipes can be used.

The existing pipe thickness meets specifications and the pipes are not damaged.

Measure the existing pipe thickness and check for damage.

Check if the existing air conditioner can operate.

After operating the cooling system for about 30 minutes, do a pump down work.

Disconnect the existing air conditioner from the pipes.

Attach the new air conditioner

Perform the airtight test, vacuum air purging, additional refrigerant charging (if necessary), and gas leak check.

The existing pipe thickness does not meet specifications or the pipes are damaged.

* If the existing air conditioner cannot operate, use a refrigerant recovery device to collect the refrigerant.

* In case existing pipes were used for gas or oil heat pump systems, be sure to clean the pipes.

The existing pipes cannot be reused. Use new pipes.

4.8. For twin/triple combination (Fig. 4-9)

• When this unit is used as a FREE COMPO MULTI unit, install the refrigerant piping with the restrictions indicated in the drawing on the left. In addition, if the restrictions are going to be exceeded, or if there are going to be combinations of indoor and outdoor units, refer to installation instructions for the indoor unit for details about the installation.

4. Installing the refrigerant piping

5. Drainage piping work

Outdoor unit drainage pipe connection
When drain piping is necessary, use the drain socket or the drain pan (option).
6. Electrical work

6.1. Outdoor unit (Fig. 6-1, Fig. 6-2)

- Remove the service panel.
- Wire the cables referring to the Fig. 6-1 and the Fig. 6-2.
 * Except PEA-RP170, 200 WHA

* In case of PEA-170, 200

* In case of PEA-170, 200

Note:
If the protective sheet for the electrical box is removed during servicing, be sure to reinstall it.

Caution:
Be sure to install N-Line. Without N-Line, it could cause damage to the unit.
6. Electrical work

6.2. Field electrical wiring

<table>
<thead>
<tr>
<th>Outdoor unit model</th>
<th>RP71V</th>
<th>RP100,125V</th>
<th>RP140,170V</th>
<th>RP100, 125, 140Y</th>
<th>RP170, 200Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor unit power supply</td>
<td>~N (single), 50 Hz, 230 V</td>
<td>~N (single), 50 Hz, 230 V</td>
<td>~N (single), 50 Hz, 230 V</td>
<td>3N (3 ph 4-wires), 50 Hz, 400 V</td>
<td>3N (3 ph 4-wires), 50 Hz, 400 V</td>
</tr>
<tr>
<td>Outdoor unit input capacity Main switch (Breaker)</td>
<td>*1 25 A</td>
<td>32 A</td>
<td>40 A</td>
<td>16 A</td>
<td>32 A</td>
</tr>
<tr>
<td>Indoor unit-Outdoor unit power supply</td>
<td>*2 3 × 1.5 (Polar)</td>
<td>3 × Min. 4</td>
<td>3 × Min. 6</td>
<td>5 × Min. 1.5</td>
<td>5 × Min. 4</td>
</tr>
<tr>
<td>Indoor unit-Outdoor unit earth</td>
<td>*2 1 × Min. 1.5</td>
<td>1 × Min. 1.5</td>
<td>1 × Min. 1.5</td>
<td>1 × Min. 1.5</td>
<td>1 × Min. 1.5</td>
</tr>
<tr>
<td>Remote controller-Indoor unit</td>
<td>*3 2 × 0.3 (Non-polar)</td>
<td>2 × 0.3 (Non-polar)</td>
<td>2 × 0.3 (Non-polar)</td>
<td>2 × 0.3 (Non-polar)</td>
<td>2 × 0.3 (Non-polar)</td>
</tr>
<tr>
<td>Outdoor unit L-N (single)</td>
<td>*4 AC 230 V</td>
<td>AC 230 V</td>
<td>AC 230 V</td>
<td>AC 230 V</td>
<td>AC 230 V</td>
</tr>
<tr>
<td>Outdoor unit L1-N, L2-N, L3-N (3 phase)</td>
<td>*4 AC 230 V</td>
<td>AC 230 V</td>
<td>AC 230 V</td>
<td>AC 230 V</td>
<td>AC 230 V</td>
</tr>
<tr>
<td>Indoor unit-Outdoor unit S1-S2-S3</td>
<td>*4 DC 24 V</td>
<td>DC 24 V</td>
<td>DC 24 V</td>
<td>DC 24 V</td>
<td>DC 24 V</td>
</tr>
<tr>
<td>Remote controller-Indoor unit</td>
<td>*4 DC 12 V</td>
<td>DC 12 V</td>
<td>DC 12 V</td>
<td>DC 12 V</td>
<td>DC 12 V</td>
</tr>
</tbody>
</table>

*1: A breaker with at least 3.0 mm contact separation in each poles shall be provided. Use earth leakage breaker (IV).
*2. (RP71-140)
Max. 45 m
If 2.5 mm² used, Max. 50 m
If 2.5 mm² used and S3 separated, Max. 80 m (RP170, 200)
Max. 80 m Total Max. including all indoor/Outdoor connection is 80 m.
- Use one cable for S1 and S2 and another for S3 as shown in the picture.
- Max. 50 m Total Max. for PEA. Wiring size 3 × 1.5 (Polar).
*3: The 10 m wire is attached in the remote controller accessory.
*4: The figures are NOT always against the ground.
S3 terminal has DC 24 V against S2 terminal. However between S3 and S1, these terminals are NOT electrically insulated by the transformer or other device.

Notes:
1. Wiring size must comply with the applicable local and national code.
2. Power supply cords and Indoor/Outdoor unit connecting cords shall not be lighter than polyvinyl chloride sheathed flexible cord. (Design 60245 IEC 57)
3. Use an earth wire which is longer than the other cords so that it will not become disconnected when tension is applied.

Be sure to connect the indoor-outdoor connecting cables directly to the units (no intermediate connections).
Intermediate connections can lead to communication error if water enters the cables and causes insufficient insulation to ground or a poor electrical contact at the intermediate connection point.
7. Test run

7.1. Before test run

After completing installation and the wiring and piping of the indoor and outdoor units, check for refrigerant leakage, looseness in the power supply or control wiring, wrong polarity, and no disconnection of one phase in the supply.

Use a 500-volt megohmmeter to check that the insulation resistance between the power supply terminals and ground is at least 1.0 MΩ.

Do not carry out this test on the control wiring (low voltage circuit) terminals.

Warning:

Do not use the air conditioner if the insulation resistance is less than 1.0 MΩ.

Insulation resistance

After installation or after the power source to the unit has been cut for an extended period, the insulation resistance will drop below 1 MΩ due to refrigerant accumulation in the compressor. This is not a malfunction. Perform the following procedures.

1. Remove the wires from the compressor and measure the insulation resistance of the compressor.
2. If the insulation resistance is below 1 MΩ, the compressor is faulty or the resistance dropped due to accumulation of refrigerant in the compressor.
3. After connecting the wires to the compressor, the compressor will start to warm up after power is supplied. After supplying power for the times indicated below, measure the insulation resistance again.

7.2. Unit replacement operation (RP71-140)

When reusing existing pipes that carried R22 refrigerant, replacement operation must be performed before performing a test run.

* If new pipes are used, these procedures are not necessary.

Replacement operation procedures

1. Supply power.
2. Set DIP switch SW8-2 on the control board of the outdoor unit to ON to start replacement operation.
 * The replacement operation is performed using the cooling system. Cool air will flow from the indoor unit during the replacement operation.
 * During the replacement operation, "TEST RUN" is displayed on the remote controller and LED1 and LED2 on the control board of the outdoor unit flash together.
 * The duration of the replacement operation is determined by the length of the piping. Always perform the replacement operation for longer than the stipulated time.
 * Use one of the following methods to complete the replacement operation. When the replacement operation ends, the unit will automatically stop.

7.3. Test run

7.3.1. Using SW4 in outdoor unit

<table>
<thead>
<tr>
<th>SW4-1</th>
<th>SW4-2</th>
<th>SW4-4</th>
<th>SW4-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>Cooling operation</td>
<td>Heating operation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* After performing the test run, set SW4-1 to OFF.
* After power is supplied, a small clicking noise may be heard from the inside of the outdoor unit. The electronic expansion valve is opening and closing. The unit is not faulty.

7.3.2. Using remote controller

Refer to the indoor unit installation manual.
8. Initial settings for refrigerant leakage detection function

This air conditioner (outdoor unit) can detect refrigerant leakage which may happen during a long period of use. In order to enable the leakage detection, the following settings are required to let the unit memorize the initial conditions (initial learning).

* Except RP170, 200.

Caution: Make sure to perform the “7. Test run” and confirm the unit works without any problems, before starting the following settings.

How to select the “Refrigerant Leakage Detection” mode
Detection is possible regardless the unit’s operation (ON or OFF).

1. Press [TEST START] button for more than 3 seconds to switch to the maintenance mode.

2. Press [CLOCK ()] button and select the [GAS LEAK TEST START] (Fig. 8-2)

* The initial learning for the leakage detection is always done once after the new installation or the data reset.

How to start the initial learning

1. Press [CLOCK ()] button to confirm. (Fig. 8-3)

* The initial learning can also be cancelled by pressing [TEST START] button.

How to finish the initial learning

Once the unit’s operation is stabilized, the initial learning is completed.

1. Press [TEST START] button for more than three seconds to cancel the initial learning.

* Refer to the Technical Manual for the refrigerant leakage detection judgment method.

9. Special Functions

9.1. Low noise mode (on-site modification) (Fig. 9-1)
By performing the following modification, operation noise of the outdoor unit can be reduced by about 3-4 dB.

The low noise mode will be activated when a commercially available timer or the contact input of an ON/OFF switch is added to the CNDM connector (option) on the control board of the outdoor unit.

- The ability varies according to the outdoor temperature and conditions, etc.

1. Complete the circuit as shown when using the external input adapter (PAC-SC36NA). (Option)

2. SW7-1 (Outdoor unit control board): OFF

3. SW1 ON: Low noise mode

4. SW1 OFF: Normal operation

9.2. Demand function (on-site modification) (Fig. 9-2)
By performing the following modification, energy consumption can be reduced to 0 –100% of the normal consumption.

The demand function will be activated when a commercially available timer or the contact input of an ON/OFF switch is added to the CNDM connector (option) on the control board of the outdoor unit.

1. Complete the circuit as shown when using the external input adapter (PAC-SC36NA). (Option)

2. RP171-140

By setting SW7-1 and SW7-2 on the control board of the outdoor unit, the energy consumption (compared to the normal consumption) can be limited as shown below.

<table>
<thead>
<tr>
<th>SW7-1</th>
<th>SW7-2</th>
<th>Energy consumption (SW2 ON)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>0% (Stop)</td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>50%</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>75%</td>
</tr>
</tbody>
</table>

3. RP170, 200

By setting SW7-1 on the control board of the outdoor unit, the energy consumption (compared to the normal consumption) can be limited as shown below.

<table>
<thead>
<tr>
<th>Demand function</th>
<th>SW7-1</th>
<th>SW2</th>
<th>SW3</th>
<th>Energy consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>100%</td>
</tr>
<tr>
<td>On</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>75%</td>
</tr>
<tr>
<td>Off</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>50%</td>
</tr>
<tr>
<td>Off</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>0% (Stop)</td>
</tr>
</tbody>
</table>

* Except RP170, 200.
9. Special Functions

9.3. Refrigerant collecting (pump down)
Perform the following procedures to collect the refrigerant when moving the indoor unit or the outdoor unit.
1. Supply power (circuit breaker).
 * When power is supplied, make sure that “CENTRALLY CONTROLLED” is not displayed on the remote controller. If “CENTRALLY CONTROLLED” is displayed, the refrigerant collecting (pump down) cannot be completed normally.
2. After the gas stop valve is closed, set the SWP switch on the control board of the outdoor unit to ON. The compressor (outdoor unit) and ventilators (indoor and outdoor units) start operating and refrigerant collecting operation begins. LED1 and LED2 on the control board of the outdoor unit are lit.
 * Only set the SWP switch (push-button type) to ON if the unit is stopped. However, even if the unit is stopped and the SWP switch is set to ON less than 3 minutes after the compressor stops, the refrigerant collecting operation cannot be performed. Wait until compressor has been stopped for 3 minutes and then set the SWP switch to ON again.
3. Because the unit automatically stops in about 2 to 3 minutes after the refrigerant collecting operation (LED1 and LED2 are lit), be sure to quickly close the gas stop valve. When LED1 and LED2 are lit and the outdoor unit is stopped, open the liquid stop valve completely, and then repeat step 2 after 3 minutes have passed.
4. Turn off the power supply (circuit breaker).
 * Note that when the length of the extension piping is long, it may not be possible to perform a pump-down operation. When performing the pump-down operation, make sure that the low pressure is lowered to near 0 MPa (gauge).
 Warning:
 When pumping down the refrigerant, stop the compressor before disconnecting the refrigerant pipes. The compressor may burst if air etc. get into it.

10. System control (Fig. 10-1)

- Set the refrigerant address using the DIP switch of the outdoor unit.
- Wiring from the Remote Control
 This wire is connected to TB5 (terminal board for remote controller) of the indoor unit (non-polar).
- When a Different Refrigerant System Grouping is Used.
 Up to 16 refrigerant systems can be controlled as one group using the slim MA remote controller.

Note:
In single refrigerant system (twin/triple), there is no need of wiring 1.

<table>
<thead>
<tr>
<th>SW1 Function table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>
This product is designed and intended for use in the residential, commercial and light-industrial environment.